Periode(T) = banyaknya waktu dalam satu getaran; Amplitude (A) = simpangan maksimum; Terdapat beberapa syarat dalam fenomena yang dikatakan sebagai gerak harmonik sederhana, yaitu: Berosilasi periodik; Terdapat gaya pemulih pada osilasi; Arah percepatan dan gaya yang bekerja mengarah ke titik kesetimbangan; Terdapat inersia yang menyebabkan Sobat Pijar, pernahkah kamu lihat gerakan bandul atau per? Kedua gerakan itu termasuk dalam gerak harmonik sederhana, lho. Jadi, gerakannya bolak-balik di sekitar titik keseimbangan. Kalau kamu perhatikan, bandul punya titik keseimbangan di tengah. Meski kecepatannya melambat, bandul tetap bergerak di sekitar titik keseimbangan harmonik sederhana ini merupakan salah satu materi penting dalam fisika, khususnya dalam mekanika. Gerak ini biasanya terjadi pada benda yang bergerak bolak-balik di sekitar titik banget, kan? Gerak harmonik sederhana ini ada di mana-mana dan sangat penting untuk dipelajari. Yuk, kita belajar bersama tentang gerak harmonik sederhana kelas 10 lebih lanjut!Pengertian Gerak Harmonik SederhanaPengertian Gerak Harmonik Sederhana yang tepat adalah gerakan periodik yang dilakukan oleh benda yang memiliki amplitudo jarak maksimum dari titik keseimbangan yang kecil dan bergerak bolak-balik di sekitar titik ini biasanya terjadi pada benda yang terhubung dengan pegas atau bandul. Gerak harmonik sederhana juga dapat dianalisis menggunakan rumus matematis, seperti persamaan gerak, energi kinetik, dan energi potensialFaktor yang Mempengaruhi Gerak Harmonik SederhanaUntuk bergerak secara harmonis, ada beberapa faktor yang mempengaruhinya. Faktor yang mempengaruhi getaran pada gerak harmonik sederhana adalah sebagai berikutMassa BendaMassa benda yang bergerak mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar massa benda, maka periode getaran akan semakin lama. Hal ini disebabkan karena gaya restoratif yang dihasilkan oleh pegas atau bandul semakin kecil, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin PegasKonstanta pegas juga mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar konstanta pegas, maka periode getaran juga akan semakin pendek. Hal ini karena gaya restoratif yang dihasilkan oleh pegas semakin besar, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin GerakanAmplitudo gerakan pada Gerak Harmonik Sederhana juga mempengaruhi periode gerakan. Semakin besar amplitudo, maka periode getaran juga semakin lama. Hal ini disebabkan karena semakin jauh benda bergerak dari titik keseimbangan, semakin besar gaya restoratif yang dihasilkan oleh pegas atau bandul, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin GesekTerakhir, gaya gesek juga mempengaruhi periode getaran pada Gerak Harmonik Sederhana. Semakin besar gaya gesek, maka periode getaran akan semakin lama karena energi kinetik yang dimiliki oleh benda akan berkurang. Hal ini disebabkan karena gaya gesek yang terjadi antara benda dengan medium yang mengurangi energi kinetik yang dimiliki oleh benda, sehingga waktu yang dibutuhkan untuk melakukan satu kali gerakan bolak-balik semakin Gerak Harmonis SederhanaSimpanganSimpangan getaran harmonik adalah jarak antara posisi benda pada saat tertentu dengan posisi kesetimbangan atau posisi awal. Pada Gerak Harmonik Sederhana, simpangan benda diukur dari titik keseimbangan atau posisi awal benda saat benda mulai bergerak dapat berupa besaran vektor atau skalar. Besaran vektor digunakan untuk menggambarkan arah dan magnitudo simpangan, sedangkan besaran skalar hanya menggambarkan magnitudo simpangan tanpa memperhatikan sangat penting dalam analisis Gerak Harmonik Sederhana karena simpangan benda berubah-ubah seiring dengan waktu. Dalam satu periode getaran, simpangan benda mengalami perubahan dari simpangan maksimum hingga simpangan minimum dan kembali lagi ke simpangan maksimum. Perlu Sobat Pijar ketahui, simpangan maksimum atau simpangan terbesar disebut merupakan besaran vektor yang menggambarkan perubahan posisi suatu benda per satuan waktu. Dalam Gerak Harmonik Sederhana, kecepatan menggambarkan seberapa cepat benda bergerak pada suatu titik waktu tertentu, di sekitar titik gerak harmonik dapat dihitung dengan cara menghitung turunan waktu dari fungsi simpangan benda. Pada Gerak Harmonik Sederhana, kecepatan benda pada titik waktu tertentu dapat dihitung dengan menggunakan turunan waktu dari persamaan simpangan benda, seperti yang dijelaskan sebelumnya. Rumus KeteranganPercepatanPercepatan merupakan besaran vektor yang menggambarkan perubahan kecepatan suatu benda per satuan waktu. Dalam Gerak Harmonik Sederhana, percepatan menggambarkan seberapa cepat kecepatan benda berubah pada suatu titik waktu tertentu, di sekitar titik dapat dihitung dengan cara menghitung turunan waktu dari besaran kecepatan benda. Pada Gerak Harmonik Sederhana, percepatan benda pada titik waktu tertentu dapat dihitung dengan menggunakan turunan waktu dari persamaan kecepatan benda. Berikut rumus percepatan gerak harmonik yang wajib Sobat Pijar ketahuiRumusKeteranganContoh Soal Gerak Harmonik SederhanaBerikut adalah contoh soal Gerak Harmonik Sederhana beserta penyelesaiannyaSebuah pegas memiliki konstanta pegas sebesar 500 N/m. Benda dengan massa 0,2 kg digantungkan pada pegas tersebut dan ditarik ke bawah sejauh 5 cm dari posisi kesetimbangan, kemudian dilepaskan. Tentukan frekuensi, periode, amplitudo, simpangan, dan percepatan maksimum getaran benda!PembahasanDiketahuiKonstanta pegas k = 500 N/mMassa benda m = 0,2 kgSimpangan awal y = 5 cm = 0,05 mFrekuensi f gerakan dapat dihitung menggunakan rumusPeriode T gerakan dapat dihitung menggunakan rumusAmplitudo A gerakan sama dengan simpangan maksimum pada gerakan tersebut, sehinggaSimpangan s pada titik waktu tertentu dapat dihitung menggunakan rumusPada t = 0, simpangan adalah 0 karena benda dilepaskan dari posisi kesetimbangan. Pada t = T/4, simpangan mencapai nilai maksimum positif, sehinggaPercepatan maksimum gerakan dapat dihitung menggunakan rumusJadi, frekuensi getaran adalah 7,97 Hz, periode getaran adalah 0,1255 s, amplitudo gerakan adalah 0,05 m, simpangan pada titik waktu tertentu adalah 0,003 m, dan percepatan maksimum gerakan adalah -125 m/s^2. ________________________________________Nah, itulah penjelasan tentang gerak harmonik sederhana beserta faktor-faktor yang mempengaruhinya. Dengan memahami konsep dasar gerak harmonik sederhana dan melihat contoh soal yang diberikan, diharapkan kamu dan Sobat Pijar bisa lebih memahami cara menghitung simpangan, periode, frekuensi, dan kecepatan pada gerak harmonik sederhana. Selamat belajar dan semoga bermanfaat ya!Tertarik untuk belajar Fisika lebih lanjut? Kamu bisa menggunakan Pijar Belajar, lho! Selain ada video pembahasan materi, ada juga ratusan latihan soal yang bisa kamu manfaatkan untuk melatih kemampuan berhitung dan rumus Fisika-mu!Yuk, unduh Pijar Belajar sekarang juga! B 5/π Hz C. 5 Hz D. 10π Hz E. 10/π Hz jawab: pembahasan: rumus frekuensi pegas k = 𝜔 2.m 400 = (2πf) 2. 4 100 = (2πf) 2 10 = 2πf 5 = πf f = 5 / π 7. Sebuah partikel bergerak harmonic dengan periode 0,1 s dan amplitude 1 cm. Pada saat berada jarak patikel 0,6 cm dari titik kesetimbangan, Kelajuan partikel tesebut adalah Pasti kamu pernah mengayunkan sebuah bandul, atau memakai pulpen yang menggunakan per di dalamnya. Nah, ketika kamu amati sebenarnya gerakan tersebut termasuk ke dalam getaran harmonis contoh, saat kamu mengayunkan sebuah bandul maka bandul akan bergerak secara bolak balik melewati titik ditengah lintasannya yang dinamakan sebagai titik kesetimbangan. Berikut ini kamu akan diberikan penjelasan lebih dalam mengenai getaran Isi1 Pengertian Getaran Harmonis2 Karakteristik Getaran Harmonis pada Ayunan Bandul dan Getaran Gaya Pemulih3 Ciri-Ciri Getaran Harmonis4 Contoh Soal Getaran HarmonisPengertian Getaran HarmonisSumber Harmonis adalah sebuah benda yang bergerak secara bolak balik periodik melalui titik kesetimbangan. Grafik letak partikel ini diartikan sebagai fungsi waktu yang berupa sinus dinyatakan dalam bentuk sinus dan kosinus. Gerak ini juga sering dinamakan sebagai gerak juga Hukum Newton Tentang GravitasiKarakteristik Getaran Harmonis pada Ayunan Bandul dan Getaran PegasSimpanganSimpangan getaran harmonik sederhana merupakan jarak benda dari titik getaran harmonik sederhana dapat dirumuskan sebagai berikutv = A . cos . tKecepatan maksimum dapat diperoleh jika nilai t = karena itu disimpulkan menjadi Vmaks = tPercepatanPercepatan getaran harmonik sederhana merupakan perubahan kecepatan terhadap satuan waktu. Dimana diketahi jika arah percepatan atau gaya yang bekerja pada gerak tersebut mengarah ke arah titik kesetimbangan yang berada pada getaran harmonik sederhana akan bernilai maksimum jika atau 90°. Maka percepatan maksimum dapat dihitung menggunakan persamaan berikut iniGaya PemulihGaya pemulih adalah gaya yang dimiliki oleh benda elastis sehingga dapat kembali kebentuk = -k. xDimana F adalah gaya pemulih, k adalah konstanta pegas dan x adalah pergeseran ujung pegas dari posisi harmonis memiliki beberapa ciri, diantaranya sebagai berikutGerakan yang terjadi pada getaran harmonis yaitu berupa gerakan bolak kesetimbangan yang berada ditengah lintasan pun pasti dilewati oleh gerakan percepatan yang bekerja pada getaran harmonis sebanding dengan simpangan percepatan yang bekerja pada getaran harmonis selalu kearah titik Soal Getaran Harmonis1. Getaran harmonis yang dihasilkan dari sebuah benda yang bergetar yaitu dengan persamaan y = 0,02 sin 10 π t, dimana nilai y simpangan dalam satuan meter dan t waktu dalam satuan sekon. Tentukanlaha. amplitudob. frekuensic. perioded. simpangan maksimume. simpangan ketika t = 1/50 sekonf. simpangan ketika sudut fasenya 45°g. sudut fase ketika simpangannya 0,02 meterPembahasanDiketahui persamaan gerak harmonis dari benda tersebuty = A sin tdengan = 2 π f = 2 π / Ta amplitudo Ay = 0,02 sin 10 π tA = 0,02Jadi, besar amplitudonya adalah 0,02 frekuensi fy = 0,02 sin 10 π t = 10 π2 π f = 10 πf = 10 π / 2 πf = 5 HzJadi, besar frekuensinya adalah 5 periode TT = 1/fT = 1/5 = 0,2 sJadi, periodenya adalah 0,2 sekond simpangan maksimum y maksy = A sin ty = y maks sin ty = 0,02 sin 10 π ty = y maks sin ty maks = 0,02 m Simpangan maksimum sama dengan amplitudoJadi, simpangan maksimumnya sebesar 0,02 simpangan ketika t = 1/50 sekony = 0,02 sin 10 π ty = 0,02 sin 10 π 1/50y = 0,02 sin 1/5 πy = 0,02 sin 36°y = 0,02 × 0,58y = 0,0116 mJadi, besar simpangan benda ketika 1/50 sekon adalah 0,0116 simpangan ketika sudut fasenya 30°y = A sin ty = A sin θdimana θ adalah sudut fase, θ = ty = 0,02 sin θy = 0,02 sin 30°y = 0,02 0,5y = 0,01 mjadi, simpangan ketika sudut fasenya 30° adalah 0,01 sudut fase ketika simpangannya 0,02 metery = 0,02 sin 10 π ty = 0,02 sin θ0,02 = 0,02 sin θsin θ = 1θ = 90°Jadi, sudut fase ketika simpangannya 0,02 meter adalah terletak di 90°.2. Diketahui ada dua buah pegas yang sama disusun secara seri. Dua pegas itu memiliki kostanta sebesar 300 N/ beban sebesar 4 kg digantung pada ujung bawah pegas. Maka berapakah besar periode sistem pegas tersebut?PembahasanJadi, periode sistem pegas tersebut adalah juga Materi Usaha dan EnergiDemikianlah penjelasan mengenai materi getaran harmonis sederhana beserta contoh soal getaran harmonis. Perlu diketahui jika pada gerak yang melalui titik kesetimbangan tersebut memiliki beberapa karakteristik didalam getaran harmonis yang Ketut dan Purnama, Wawan. 2019. Buku Siswa Aktif dan Kreatif Belajar Fisika untuk Sekolah Menengah Atas/Madrasah Aliyah Kelas Peminatan Matematika dan Ilmu-Ilmu Alam. Bandung Grafindo Media Pratama Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.[1]. Contoh gerak harmonik sederhana. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu:[1] Gerak Harmonik Sederhana [GHS] Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U
MAKALAH GETARAN HARMONIK DAN KETERKAITANNYA DALAM BIDANG BIOLOGI DOSEN PENGAMPU Dr. Parno M. Si Disusun oleh Karima Nisa Aabidah 210342606031 PROGRAM STUDI S1 BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI MALANG 2021/2022 Kata Pengantar Puji syukur ke hadirat Tuhan Yang Maha Esa. Atas rahmat dan hidayah-Nya, penulis dapat menyelesaikan tugas makalah yang berjudul “Getaran Harmonik dan Keterkaitannya dalam Bidang Biologi” dengan tepat waktu. Makalah disusun untuk memenuhi tugas Mata Kuliah Fisika untuk Biologi. Selain itu, makalah ini bertujuan menambah wawasan tentang Getaran Harmonik serta penerapannya dalam biologi bagi para pembaca dan juga bagi penulis. Penulis mengucapkan terima kasih kepada Bapak Dr. Parno M. Si,selaku dosen Mata Kuliah Fisika untuk Biologi. Ucapan terima kasih juga disampaikan kepada semua pihak yang telah membantu dan berpartisipasi dalam penyelesaian makalah ini. Penulis menyadari makalah ini masih dari sempurna. Oleh sebab itu, saran dan kritik yang membangun diharapkan demi kesempurnaan makalah ini. Semoga makalah ini dapat bermanfaat bagi semua pihak yang membutuhkannya. Tulungagung, 09 November 2021 Karima Nisa Aabidah DAFTAR ISI KATA PENGANTAR DAFTAR ISI PENDAHULUANLatar Belakang MasalahRumusan MasalahTujuan PenulisanManfaat PenulisanPEMBAHASANPengertian dan karakteristik dari Getaran HarmonikFenomena Getaran Harmonik dalam Bidang BiologiPenerapan teknologi terkait Getaran HarmonikContoh soal yang berkaitan tentang Getaran HarmonikPermasalahan konstekstual terkait Getaran Harmonik pada Bidang Biologi beserta Solusi Penyelesaian dan Desain MiniaturnyaArtikel terkait dengan Getaran HarmonikPENUTUPKesimpulanSaran DAFTAR PUSTAKA BAB I PENDAHULUAN Latar Belakang Banyak orang yang sampai saat ini masih beranggapan bahwa Fisika adalah ilmu yang mempelajari tentang rumus dan lingkungan alam tanpa ada penerapannya. Padahal tanpa mereka sadari banyak sekali peristiwa-pertiwa yang menggunakan konsep dari ilmu fisika. Kehidupan sehari-hari kita tidak dapat terlepas dari proses fisis. Dimulai dari hal-hal yang diri kita lakukan terlibat dalam penerapan sederhana dari ilmu fisika, seperti saat kita berjalan, mengangkat suatu benda, gerakan-gerakan kecil yang kita lakukan dan juga saat kita sedang bermain. Salah satu permainan yang menerapkan ilmu fisika adalah ayunan. Ayunan menggunakan konsep dari getaran dan gelombang. Getaran adalah suatu gerakan bolak-bailk yang terjadi atau berada di titik kesetimbangan. Getaran yang dimaksudkan dalam ayunan adalah getaran harmonik. Harmonik sendiri memiliki arti bentuk atau pola yang selalu berulang diwaktu tertentu. Rumusan Masalah Apa yang dimaksud dengan Getaran Harmonik?Apa contoh fenomena penerapan getaran harmonik dalam biologi?Apa contoh teknologi yang menerapkan prinsip getaran harmonik?Bagaimana contoh soal dari getaran harmonik dan pembahasannya?Bagaimana solusi dan desain miniatur teknologi untuk menyelesaikan permasalahan konstektual dalam bidang biologi?Apa contoh artikel yang sesuai dengan getaran harmonik? Tujuan Penulisan Untuk mengetahui pengertian dari getaran mengetahui contoh fenomena penerapan getaran harmonik dalam bidang mengetahui contoh teknologi yang menerapkan prinsip getaran mengetahui contoh soal tentang getaran harmonik berserta mengetahui permasalahan konstektual tentang getaran harmonik dalam bidang mengetahui solusi dan desai miniatur yang digunakan untuk menyelesaikan permasalahan konstektual tentang getaran harmonik dalam bidang mengetahui contoh artikel yang sesuai dengan getaran harmonik. Manfaat Penulisan Bagi Penulis Menambah wawasan dan ilmu pengetahuan serta menambah pengalaman dalam menulis suatu makalah. Selain itu, menjadi wadah bagi mahasiswa untuk mengaplikasikan ilmu pengetahuan yang diperoleh. 2. Bagi Pembaca Hasil dari proposal penelitian ini dapat dimanfaatkan sebagai acuan dan literatur dalam melakukan penulisan yang sejenis. BAB II PEMBAHASAN Pengertian Getaran harmonik Setiap gerak berulang yang terjadi dalam selang waktu yang sama disebut gerak periodik. Lantaran gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik atau harmonis. Jika suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi atau harmonik merupakan sebuah gerak pada benda yang mana grafik letak partikel berupa fungsi waktu yang berbentuk sinus yang bisa dinyatakan dalam bentuk sinus ataupun dalam bentuk kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Getaran Harmonis memiliki beberapa syarat, yaitu Gerakannya periodik atau selalu melewati titik atau gaya yang ada pada benda sebanding dengan simpangan percepatan atau gaya benda mengarah ke titik keseimbangan. Karakteristik pada gerak harmonis Simpangan Simpangan adalah jarak benda dari titik kesetimbangan. Kecepatan Kecepatan gerak harmonik dapat dirumuskan sebagai berikut v = A . cos . t Dimana kecepatan maksimum benda dapat diperoleh jika nilai t = 0. Sehingga dapat disimpulkan bahwa Vmaks = t Percepatan Dalam getaran harmonik, percepatan adalah perubahan kecepatan terhadap satuan waktu dengan arah percepatan yang menuju titik kesetimbangan. Rumus percepatan dapat dituliskan dengan persamaan Percepatan bernilai maksimum pada 90°. Sehingga bisa menggunakan persamaan, Gaya pemulih Gaya pemulih adalah gaya yang dimiliki oleh benda elastis sehingga dapat kembali kebentuk semula. Persamaan F = -k. x Dimana F adalah gaya pemulih, k adalah konstanta pegas dan x adalah pergeseran ujung pegas dari posisi kesetimbangan. Fenomena Getaran Harmonik dalam Biologi Sistem gerak pada manusia merupakan satu kesatuan organ yang bekerja sama untuk mendukung tubuh manusia melakukan suatu gerakan. Sistem gerak tubuh manusia disebut juga dengan sistem muskuloskeletal, yang terdiri dari otot, sendi, rangka dan organ lain seperti tulang rawan dan ligamen. Organ-organ yang mendukung gerak tubuh manusia akan bekerja sama sesuai dengan fungsinya. Sistem gerak sendiri terdiri dari dua jenis alat gerak. Alat gerak aktif yang terdiri dari otot-otot dan alat gerak pasif yang terdiri dari tulang. Otot disebut alat gerak aktif karena memiliki kemampuan untuk berkontraksi, melakukan relaksasi hingga menggerakkan sesuatu. Model fisika dari gerakan yang terjadi pada tubuh manusia yakni pada saat berdiri. tubuh manusia dapat dimodelkan sebagai bandul fisis yang berayun ke arah depan-belakang, maupun pada arah samping kiri-kanan, dengan poros ayunannya terletak pada sendi ankle. Model osilasi bebas dari titik berat tubuh ternyata harus dikoreksi dengan adanya beberapa gaya pengontrol yang dilakukan oleh tendon Achilles menjadi osilasi paksa. Meninjau gerak pusat massa tubuh manusia saat berjalan atau melangkah dengan analisis kinematika menghasilkan model yang paling sesuai dengan kondisi geraknya yakni model gerak selaras atau gerak harmonik. Gard dalam Gatev et al memperlihatkan bahwa gerak pusat massa tubuh manusia saat melangkah mendekati kondisi osilasi harmonik baik pada arah mendatar maupun arah vertikal. Amplitudo gerak vertikal titik pusat massa akan bertambah besar seiring dengan bertambahnya laju gerak horizontal. Bila laju horizontal makin diperbesar, suatu saat akan terjadi perubahan status gerak dari berjalan menjadi berlari. Penerapan Teknologi di bidang biologi Modul elektrokardiograf adalah seperangkat set komponen untuk sensor denyut jantung. Dalam Modul tersebut terdapat sensor denyut jantung yang dipasangkan langsung pada tubuh manusia. EKG atau elektrokardiograf adalah alat ukur yang digunakan untuk mengukur/mendeteksi kondisi jantung dengan cara memantau irama dan frekuensi detak jantung. Untuk mengukur detak jantung, elektrode-elektrode dari elektrokardiograf ditempatkan ke dada pasien. Elektrode mendeteksi turun-naiknya arus listrik jantung dan mengirimnya ke elektrokardiograf, yang merekam perubahannya sebagai bentuk gelombang pada gulungan kertas yang bergerak. Rekaman hasil pengukuran ini disebut elektrokardiogram. Setiap kontraksi, otot jantung menghasilkan impuls kelistrikan dalam bentuk gelombang sinusoidal bentuk gelombang pada gerak harmonis yang ditampilkan pada layar elektrokardiograf. Gelombang-gelombang yang terbaca pada elektrokardiograf terdiri dari gelombang P, S, R aktivitas elektrik otot jantung yang sedang berkontraksi dan gelombang T aktivitas elektrik otot jantung yang sedang berelaksasi Contoh Soal terkait Getaran Harmonik Sebuah beban bermassa 250 gram digantung dengan sebuah pegas yang memiliki kontanta 100 N/m kemudian disimpangkan hingga terjadi getaran selaras. Tentukan periode getarannya! Jawaban Diketahui k = 100 N/m m = 250 g = 0,25 kg T = ….. Dari rumus periode getaran sistem pegas sehingga Permasalahan Konstektual, Penyelesaian dan Desain Miniatur dalam Biologi Proses mendengarkan tidak mungkin terjadi tanpa adanya penerapan gerakan harmonik sederhana. Proses mendengar dimulai dengan ditangkapnya gelombang suara yang ada di sekeliling kita melalui liang telinga. Di telinga, gelombang suara akan menyebabkan tulang pendengaran telinga tengah bergetar. Getaran tersebut kemudian merangsang sel-sel saraf di telinga bagian dalam untuk mengirimkannya ke otak. Proses transmisi suara dari telinga ke saraf agar otak bisa memprosesnya itulah yang membuat telinga bisa mendengar. Jika ada kerusakan atau gangguan pada bagian telinga tersebut, akan terjadi gangguan pendengaran. Salah satu gangguan pendengaran yang paling umum adalah tuli konduktif. Gangguan pendengaran konduktif adalah jenis tuli yang terjadi karena kerusakan pendengaran pada tulang atau jaringan ikat telinga yang mencegahnya menghantarkan suara dengan baik. Selain gangguan pada kedua bagian tersebut, ketulian juga dapat disebabkan oleh gangguan pada saraf telinga atau otak sensineural deafness. Orang dengan gangguan pendengaran konduktif sering mengalami kesulitan mendengar suara yang pelan. Sedangkan suara yang keras hanya dapat didengar dengan lembut. Pengobatan tuli konduktif akan disesuaikan dengan penyebab dan tingkat keparahan ketulian pasien. Salah satu cara yang dapat digunakan adalah dengan pemasangan alat bantu dengar atau Hearing Aid. Penggunaan alat bantu dengar ada yang ditempatkan di belakang atau pun di saluran telinga. Alat bantu dengar ini berkerja dengan cara mengubah getaran suara menjadi impuls listrik untuk diterima oleh saraf pendengaran, sehingga proses pendengaran bisa berlangsung dengan lebih lancar. Dengan adanya alat bantu dengar, penderita tuli konduktif akan lebih mudah mendengar suara-suara tertentu yang sebelumnya sulit didengar. Untuk membantu menentukan alat bantu dengan dan bagaimana pengaturan dan cara memakainya, pasien bisa berkonsultasi lebih lanjut ke dokter THT. Artikel yang terkait dengan Getaran Harmonik Contoh artikel yang berkaitan dengan penerapan Getaran Harmonik dalam bidang Biologi adalah artikel yang berjudul “Analisis Kinematika Gerak Pusat Massa Tubuh Manusia Saat Berjalan” yang disusun oleh Sardjito dan Nani Yuningsih. BAB III PENUTUP Kesimpulan Kehidupan kita tidak bisa terlepas dari pengaruh fisika dan ilmu-ilmu yang lainnya. Salah satunya adalah getaran harmonik. Hal tersebut dapat dibuktikan dengan fenomena saat kita sedang berjalan dimana gerak pusat massa tubuh manusia saat melangkah mendekati kondisi osilasi harmonik baik pada arah mendatar maupun arah vertikal. Selain itu, getaran harmonik juga dapat kita temukan dalam sistem pendengaran kita. Saran Dengan adanya makalah tentang Getaran Harmonik dan keterkaitannya dalam bidang Biologi ini, diharapkan pembaca memahami lebih lanjut mengenai getaran harmonik dan pemanfaatannya dalam biologi serta dapat memanfaatkannya dalam kehidupan sehari-hari. Daftar Pustaka Makalah Gerak Harmonik. 2015. Diakses pada 3 November 2021 dari, Rasthy. Getaran Harmonis Karakteristik, Ciri dan Contoh Soal. 2020. Diakses pada 3 November 2021 dari, Rian, Thoha. 7 Contoh Gerak Harmonik dalam Kehidupan Sehari-hari. 2021. Diakses pada 4 November 2021 dari, Anlene. Mengenal Sistem Gerak Aktif dan Sistem Gerak Pasif pada Manusia. 2021. Diakses pada 6 November 2021 dari, Sardjito & Yuningsih, N. Analisis Kinematika Gerak Pusat Massa Tubuh Manusia saat Berjalan. 2013. Diakses pada 6 November 2021 dari, Mulyadi, Dedy and Nuryadi, Satyo 2018 Sistem Deteksi Dini Kelainan Jantung Manusia Menggunakan Elektrokardiograf. Tugas Akhir thesis, University of Technology Yogyakarta.
Jikay dalam meter dan t dalam detik, tentukanlah: 1) persamaan kecepatan dan percepatan getar, 2) kecepatan getar maksimum dan percepatan getar maksimum, 3) Kecepatan getar dan percepatan getar saat t bernilai 1 detik, dan 4) sudut fase saat kecepatan getar sama dengan kecepatan getar maksimum! Jawab: Besaran yang diketahui. Baca Juga
Getaran Fisika SMA – Dear All, kali ini kita belajar sedikit mengenati materi getaran di SMA. Masih ingatkah sobat apa itu getaran, fekuensi, dan periode? ngga pakai lama temukan jawabannya di uraian berikut Apa itu Getaran? Definisi dari getaran adalah gerak bolak balik back and forth motion yang terjadi secara periodik melalui suatu titik kesetimbangan. Getaran terjadi ketika ada gaya yang bekerja pada sebuah sistem benda elastis. Benda tersebut akan kembali ke titik kesetimbangannya setelah menerima gaya, begitu seterusnya. Yang dimaksud dengan titik kesetimbangan adalah titik saat resultan gaya yang bekerja pada benda sama dengan nol. Terjadinya sebuah getaran adalah peristiwa yang unik. Dari sebuah getaran bisa muncul berbagai besaran pokok dan turunan. Periode T adalah waktu yang diperlukan untuk sebuah getaran terjadi dengan atuan second. Frekuensi Getaran f adalah banyaknya getaran yang bisa terjadi dalam satu satuan waktu biasanya detik satuan Hertz Hz. Hubungan keduanya adalah berbanding terbalik. Periode adalah kebalikan dari frekuensi, dirumuskan Selain frekuensi dan periode ada juga namanya simpangan, kedudukan sutu titik terhadap titik kesetimbangan pada waktu tertentu. Simpangan terbesar dari sebuah getaran kemudian sobat kenal dengan nama amplitudo. Getaran Harmonik Sederhana Yang dimaksud getaran harmonik sederhana adalah sebuah getaran yang resultan gaya yang bekerja pada titik sembarang selalu mengarah pada titik keseimbangan. Besarnya gaya yang bekerja sebanding dengan jarak titik sembarang ke titik keseimbangan. Contoh getaran harmonik sederhana bisa sobat jumpai pada pegas dan pada ayunan. Perasamaan Simpangan, Kecepatan, dan Percepatan pada Getaran Dalam getaran harmonik ada besaran yang disebut simapangan, kecepatan harmonik, dan juga percepatan getarn harmonik. Simpangan paling besar dari sebuah getaran dapat dicapai benda Amplitudo atau simpangan maksimal Ym. Besarnya simpangan dirumuskan y = A sin t + θ0 A = amplitudo simpangan maksimal = frekuensi sudut θ0 = fase sudut awal Persamaan kecepatan pada getaran harmonik dapat sobat peroleh dari turunan persamaan simpanga baku terhadap waktu Vy = A cos t + θ0 ingat sobat turunan dari Sin f x adalah cos fx . f'x Sedangkan persamaan percepatan pada getaran harmonik adalah turunan pertama dari kecepatan atau turunan kedua dari sipangan ay = – 2A sin t + θ0 ingat sobat turunan dari Cos fx adalah -sin fx. f'x Sudut Fase, Fase, dan Besa Fase pada Getaran harmonik Apa itu fase, sudut fase, dan beda fase dalam getaran harmonik? Jika kita lihat dari persamaan sinpangan y = A sin t + θ0 atau bisa ditulis y = A sin 2 π t/T + θ0 yang dinamakan sudut fase adalah sudut 2 π t/T + θ0, ia dinotasikan dengan theta θ jadi rumus dari sudut fase adalah rumus di atas dapat ditulis juga nah yang kami kasih warna kuning adalah dinamakan fase getaran. Jika ketika t = t1 fase getaran adalah φ1 dan pada saat t = t2 fase getaran adalah φ2. Maka selisih fase tersebut dinamakan beda fase Δφ dirumuskan Contoh Soal Jika ada sebuat titik materi melakukan getaran harmonik sederhana dengan simpangan terbesar adalah A. Pada saat simpangannya 1/2 A √2, maka fase getaran titik tersebut terhadap garis keseimbangan adalah a. 1/4 d. 1/32 b. 1/8 e. 1/64 c. 1/16 Pembahasan Diketahui besarnya simpangan y = 1/2 A √2 A sin t + θ0 = 1/2 A √2 sin t + θ0 = 1/2 √2 sin θ = 1/2 √2 θ sudut fase = 45o = π/4 ingat sobat π = 180o hubungan sudut fase dengan fase adalah θ = 2π φ lihat rumus di atas π/4 = 2π φ 1/8 = φ Jadi fase getaran pada saat simpangan getaran 1/2 A √2 adalah 1/8 dari garis keseimbangan. Contoh soal dari Ujian Nasional 2002 Sebuah partikel bergeak harmonik dengan amplitudo 13 cm dan periode 0,1π sekon. Kecepatan partikel pada saat simpangannya 5 cm adalah? a. 2,4 m/s b. 2,4π m/s c. 2,4 m2 m/s d. 24 m/s e. 240 m/s Jawab diketahui A = 13 cm, T = 0,1π s, y = 5 cm untuk menjawab soal getaran di atas ada rumus cepat dari Vy = A cos t + θ0 ada aturan trigonometri cos2 x = 1-sin2x Dalamgetaran harmonik, percepatan getaran .(A) selalu sebanding dengan simpangannya (B) tidak bergantung simpangan (C) berbanding terbalik dengan kuadrat frekuensinya (D) berbanding lurus dengan pangkat tiga amplitudonya (E) berbanding lurus dengan sudut fasenya Gerak Harmonik Sederhana – Gerakan harmonik ini yakni mempunyai suatu amplitudo konstan deviasi maksimum dan frekuensi. Pergerakan itu periodik. Setiap gerakan diulangi dan dilakukan terus menerus pada interval waktu sama. Dengan gerakan harmonik sederhana, gaya yang dihasilkan persis arah yang sama dengan yang mendekati arah keseimbangan. Gaya ini disebut gaya pemulihan. Gaya pemulih berbanding lurus dengan posisi objek sehubungan dengan keseimbangan. Apa itu Gerak Harmonik Sederhana ?Karakteristik Gerakana. Simpanganb. Kecepatanc. Energid. PercepatanSyarat Getaran HarmonikPeriode dan Frekuensi Getaran Harmonika. Periode dan Frekuensi Bandul Sederhanab. Periode dan Frekuensi Sistem Pegas Pengertian Gerak Harmonik Sederhana merupakan bahwa objek berubah secara konstan pada titik kesetimbangan, jumlah getaran per detik harus konstan atau sama. Gerakan harmonik ini yakni dapat disebabkan oleh benda yang memiliki kekuatan mereka dapat mendorong atau menarik dan memiliki kekuatan penyembuhan, misalnya dalam memperluas dan memecah pegas dari titik setimbang karena kekuatan. Jika pada musim semi getaran, gaya awal dihubungkan dengan hukum kait. Dalam konsep gerakan harmonik ada beberapa besaran fisik yang diperoleh dari objek berosilasi, yakni Simpangan y = Jarak benda dalam dari kesetimbanganPeriode T = Banyaknya dalam waktu yang satu getaranFrekuensi f = Getaran setiap waktuAmplitude A = Simpangan yang maksimum Dengan materi ini adanya berbagai kondisi sebagai terjadinya suatu fenomena yang disebut sebagai gerakan harmonik sederhana, yakni Getaran mempercepat atau memaksa aksi menuju untuk mengembalikan inersia yang dapat menyebabkan overshoot melewati posisi dalam adanya suatu keseimbangan. Karakteristik Gerakan Berdasarkan karakteristik adanya berbagai karakteristik dalam gerakan tersebut, yakni a. Simpangan Simpangan dalam getaran harmonik ringan bisa dilihat sebagai prediksi partikel bergerak dalam bentuk lingkaran dengan diameter lingkaran. Secara umum, rumus untuk penyimpangan dalam gerakan adalah sebagai berikut. y = Simpangan getaran mT = Periode s = Kecepatan sudut rad/sf = Frekuensi HzA = Amplitudo/simpangan maksimum m b. Kecepatan Kecepatan adalah turunan dari posisi pertama. Untuk gerakan harmonik sederhana, kecepatan yang dapat diturunkan dari turunan pertama dari rumus deviasi. c. Energi Persamaan energi dalam gerakan harmonik sederhana termasuk energi kinetik, energi potensial dan energi mekanik. Energi kinetik dapat diringkas sebagai berikut. k = Nilai ketetapan N/mA = Amplitudo m = Kecepatan sudut rad/st = Waktu tempuh s Jumlah energi potensial dan energi kinetik dari objek bergerak dalam harmoni sederhana tetap merupakan nilai konstan. d. Percepatan Percepatan terhadap suatu objek kopling harmonik sederhana dapat diperoleh dari turunan pertama dari rumus kecepatan atau turunan kedua dari persamaan deviasi. Persamaan percepatan dapat diperoleh sebagai berikut. Deviasi maksimum memiliki nilai yang sama dengan amplitudo y = A, oleh karena itu percepatan maksimumnya ialah am=- Aw Syarat Getaran Harmonik Kebutuhan akan gerakan bicara adalah getaran harmonis, termasuk Gerakan periodik mundur.Gerakannya selalu melewati posisi atau memaksakan efek pada objek yang sebanding dengan posisi atau dalam penyimpangan akselerasi atau gaya yang bekerja pada suatu benda menciptakan keseimbangan. Periode dan Frekuensi Getaran Harmonik Adapun dengan berbagai periode dan frekuensi dalam getaran ini, diantaranya ialah sebagai berikut a. Periode dan Frekuensi Bandul Sederhana Sebuah pendulum sederhana terdiri dari massa yang digantungkan di ujung tali ringan massa terabaikan dari 1. Ketika beban ditarik ke satu sisi dan dilepaskan, beban memecah titik kesetimbangan ke sisi lainnya. Jika amplitudo ayunan rendah, bandul menciptakan getaran harmonis. Frekuensi dan frekuensi osilasi di pendulum sama dengan di musim semi. Artinya, waktu dan frekuensi dapat dihitung dengan membandingkan kekuatan pemulihan dan centripetal. b. Periode dan Frekuensi Sistem Pegas Padahal, gerakan harmonik adalah gerakan melingkar tidak beraturan di salah satu gelombang utama. Oleh karena itu, waktu dan frekuensi dalam pegas dapat dihitung dengan menambahkan gaya pemulihan F = -kX dan gaya sentripetal F = -4π2 mf2X. Durasi dan frekuensi sistem beban pegas hanya bergantung dalam suatu massa dan konstanta pegas. Baca Juga Demikianlah pembahasan kali ini, yang telah kami sampaikan secara lengkap dan jelas yakni mengenai Gerak Harmonik Sederhana. Semoga ulasan ini, dapat berguna dan bermanfaat bagi Anda semuanya. Tentukanbeberapa besaran dari persamaan getaran harmonis tersebut: a) amplitudo b) frekuensi c) periode d) simpangan maksimum e) simpangan saat t = 1/60 sekon f) simpangan saat sudut fasenya 45° g) sudut fase saat simpangannya 0,02 meter Pembahasan Pola persamaan simpangan gerak harmonik diatas adalah a) amplitudo atau A y = 0,04 sin 20π t ↓ .
  • c7i76yrazf.pages.dev/847
  • c7i76yrazf.pages.dev/862
  • c7i76yrazf.pages.dev/869
  • c7i76yrazf.pages.dev/83
  • c7i76yrazf.pages.dev/919
  • c7i76yrazf.pages.dev/793
  • c7i76yrazf.pages.dev/725
  • c7i76yrazf.pages.dev/648
  • c7i76yrazf.pages.dev/177
  • c7i76yrazf.pages.dev/288
  • c7i76yrazf.pages.dev/135
  • c7i76yrazf.pages.dev/90
  • c7i76yrazf.pages.dev/864
  • c7i76yrazf.pages.dev/43
  • c7i76yrazf.pages.dev/687
  • dalam getaran harmonik percepatan getaran